

Memorial Sloan Kettering Cancer Center

Are We Defining the Right Doses of Targeted Therapy?

March 16, 2017 David Hyman, MD Chief, Early Drug Development Service Memorial Sloan Kettering Cancer Center

Do We Have a Problem? The Case Study of Cabozantinib

- MTD in first-in-human Phase I 175mg daily
- FDA approved for metastatic medullary thyroid cancer (MTC) at 140mg daily
- Phase III RCT trial in MTC (cabo vs placebo):
 - 330 patients
 - Dose reduction: <u>79%</u> vs 9%
 - Median dose delays: <u>1</u> vs o
 - Tox leading to rx discontinuation: 16% vs 8%
- Current studies using 6omg daily
- Does this represent a problem?

Key Questions

- What defines a tolerable dose for targeted therapy?
- Are our Phase I studies defining tolerable doses?
- What are the implications of different dose escalation schema?
- Do Phase I studies identify key toxicity of agents?
- How do we approach differing schedules and drug combinations?

How Widespread is This Phenomena

% Dose Reductions in 34 Phase III Studies of Recently Approved Targeted Agents

7/34 (31%) required dose reductions in >50% of patients

Memorial Sloan Kettering Cancer Center

Roda et al, Clin Cancer Res; 22(9) May 1, 2016

BELLE-2: Fulvestrant ± Buparlisib in ER+ Breast Ca

Patient Disposition, %	Buparlisib + Fulvest	rant (n=576)	Placebo + Fulvestrant (n=571)					
Treatment phase ongoing	16.1		16.5					
Treatment discontinued	83.5		83.2					
Primary reason for treatment discontinuation								
Progressive disease	54.3		73.0					
Adverse event	13.2	26%	1.8					
Patient decision	8.9	discontinue	3.2					
Physician decision	4.0	without PD	3.7					
Death	1.2	without i b	0.9					
Other	1.9		0.7					

Exposure to Study Treatment	Buparlisib + Fulvestrant (n=573)		Placebo + Fulvestrant (n=570)		
Median duration of treatment exposure, months		4.2		5.0	
Buparlisib/placebo median relative dose intensity, %		93.2	Treatment E	xposure Lower ₁₀₀	
Buparlisib/placebo dose adjustments, %					
Dose reduction		46.4		7.0	
Dose interruption		55.8		31.4	

AE Rate: 63.2% (G3), 14.1% (G4)

Memorial Sloan Kettering Cancer Center

Baselga et al, San Antonio Breast Cancer Symposium 2015

Where Do We Start? Bayesian Dose Escalation Designs and Adoption

How Accurately Do We Estimate the MTD?

- Even in the absence of attribution error – MTD estimated correctly only 50% of the time (lower with 3+3)
- CRM more robust to introduction of 15% error rate in physician DLT attribution

lasonos A et al, Clin Cancer Res; 18(19) October 1, 2012

The Core of the Problem: Chronic Toxicity

- MTD reflects <u>only</u> Cycle 1 toxicity
- However, targeted agents are administered chronically

Postel-Vinay, JCO Vol 29, Num 13, may 1 2011

Key Metrics: Treatment Interruption and Reduction

Treatment interruption / dose-reductions continue after Cycle 1

Is There a Better Way?

Expansion cohort

To confirm RP2D if:

- Tolerable in 12–20 patients.
- Long observation (2 cycles)
 - should be completed.
- Dose modifications in less than 30% of patients

Roda et al, Clin Cancer Res; 22(9) May 1, 2016

Another Proposal - Defining the "Chronic" MTD

Postel-Vinay, JCO Vol 29, Num 13, may 1 2011

Does Phase I Toxicity Reflect Phase III Toxicity?

Trial/agent characteristic	Was DLT represented in the four most frequent grade 3/4 adverse events of later trials? ^a			Were the clinically significant toxicities on later trials described on the respective phase I trial? ^b		
	N	N "yes" (%)	Р	N	N "yes" (%)	Р
Overall	75	54 (72)		84	68 (81)	
Drug class						
Cytotoxic	36	29 (81)	0.12 ^c	36	32 (89)	0.23
Targeted	33	21 (64)		37	29 (78)	
Other	6	4 (67)		11	47 (64)	
Route ^d						
IV	43	30 (70)	0.68	47	37 (79)	0.60
PO	31	23 (74)		36	30 (83)	
Monotherapy or not						
Single agent	62	45 (73)	0.81	70	55 (79)	0.21
Combination	13	9 (69)		14	13 (93)	
Number of patients						
11–36	37	28 (76)	0.48	42	30 (71)	0.026
37–153	38	26 (68)		42	38 (90)	

More Patients on Phase I = Better Toxicity Estimation

Jardim et al, Clin Cancer Res; 20(2) January 15, 2014

Does Phase I RP2D Reflect Phase III Dose Selection?

More Patients on Phase I = Better Dose Estimation

Jardim et al, Clin Cancer Res; 20(2) January 15, 2014

Incorporating Dose Expansion Toxicity to Improve MTD Estimates

lasonos et al, J Clin Oncol 31:4014-4021

Schedule Adds Another Dimension of Complexity-Can Impact Therapeutic Index and Efficacy

Defining Doses of Combination Therapy – Endless Permutations

 Cannot be purely empiric, must be guided by mechanism and pharmacodynamics

Riviere, Statist. Med. 2015, 34 1–12

Conclusions

- Bayesian dose escalation offers advantages over 3+3 design
- 'MTD' is an outdated concept for chronically dosed targeted therapy
- Defining tolerable doses must include information on the rate of interruption/reduction/discontinuation
- Absence of robust PD for the majority of targets make defining a biologically effective dose challenging
- Schedule is an often underappreciated and difficult to study dimension of therapeutic index and efficacy
- Doses of combinations must be driven by mechanism and not empiricism

